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I. REVIEW

Last time we:
(1) Defined a Fuchsian triangle group as the set of orientation-preserving isometries

of D generated by the rotations about the vertices.
(2) Noted that, given a hyperbolic triangle with angles π/a, π/b, π/c, then the trian-

gle group ∆(a, b, c) has presentation

〈δa, δb, δc | δa
a = δb

b = δc
c = δaδbδc = 1〉 .

(3) Discovered that the modular group Γ(1) = PSL2(Z) is a triangle group, namely
∆(2, 3, ∞). We showed this by constructing a fundamental domain for Γ(1), namely
the triangle with vertices at i, e2πi/6, and ∞, together with its reflection across the
imaginary axis.

II. THE MODULAR GROUP AS A TRIANGLE GROUP

II.1. Subgroups and congruence subgroups.

Proposition 1. Let Γ and Γ′ be Fuchsian groups. Suppose that Γ′ ≤ Γ and [Γ : Γ′] = n. Let
γ1, . . . , γn ∈ Γ be a set of right coset representatives of Γ′\Γ. Let Q be a hyperbolic polygon that
is a fundamental domain for Γ. Then

D :=
n⋃

j=1

γj(Q)

is a fundamental domain for Γ′.
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Remark 2. In other words, if we know a fundamental domain Q for a Fuchsian group Γ
and Γ′ ≤ Γ, we can obtain a fundamental domain for Γ′ by translating Q by a set of coset
representatives.

An important class of subgroups of Γ(1) are so-called principal congruence subgroups. For
N ∈ Z≥1, the principal congruence subgroup Γ(N) is the kernel of the reduction map

Γ(1) = PSL2(Z)→ PSL2(Z/NZ)

that reduces the entries of a matrix modulo N. In other words, Γ(N) fits into a short exact
sequence

1→ Γ(N)→ Γ(1)→ PSL2(Z/NZ)→ 1 .
Γ(2) turns out to be of particular interest. We will show that Γ(2) ∼= ∆(∞, ∞, ∞), the

free group on two generators.

Lemma 3. Let q = pr be a prime power. Then

# GLm(Fq) = (qm − 1)(qm − q) · · · (qm − qm−1) .

Corollary 4. # PSL2(Z/2Z) = (22 − 1)(22 − 2) = 6.

Proof. Note that GL2(Z/2Z) = SL2(Z/2Z) since the only possibilities for the value
of the determinant are 0 and 1. Also note that the center of GL2(Z/2Z) is trivial, so
PSL2(Z/2Z) ∼= GL2(Z/2Z). �

In order to apply the above proposition to determine a fundamental domain, we must
find a set of coset representatives for Γ(2)\Γ(1). Recall that the reflections of the 2, 3, ∞
triangle are

τ3 : z 7→ −z, τ2 : z 7→ −z + 1, τ∞ : z 7→ 1/z .
(To see this: to get a reflection over the imaginary axis, we first reflect over the real axis,
then rotate 180◦. To get a rotation across the line Re(z) = 1/2, do the above, then translate
by 1. Finally, note that z = 1/z for points on the unit circle, so 1/z fixes the unit circle.)
[Show picture on p. 124 of GGD.] We can find the corresponding reflections by composing
these, obtaining

δ2 = τ∞ ◦ τ3 : z 7→ −1/z
(

0 −1
1 0

)
δ3 = τ∞ ◦ τ2 : z 7→ 1

−z + 1

(
0 1
−1 1

)
δ∞ = τ3 ◦ τ2 : z 7→ z− 1

(
1 −1
0 1

)
are generators for Γ(1). One can show that the following is a set of representatives

id =

(
1 0
0 1

)
, δ3 =

(
0 −1
1 −1

)
, δ3

2 =

(
1 −1
1 0

)
,

δ∞ =

(
1 −1
0 1

)
, δ∞δ3 =

(
−1 0
1 −1

)
, δ2 =

(
0 −1
1 0

)
Rather than choosing the usual fundamental domain for Γ(1), we will instead take the

triangle with vertices i, e2πi/6 and ∞, toegether with its reflection over the vertical line
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Re(z) = 1/2. We denote this fundamental domain by Q′. [Show picture on p. 124 of
GGD. again.] By the proposition above, then

D = Q′ ∪ δ3(Q′) ∪ δ3
2(Q′) ∪ δ∞(Q′) ∪ δ∞δ3(Q′) ∪ δ2(Q′)

is a fundamental domain for Γ(2). Observe that

Q′ ∪ δ3(Q′) ∪ δ3
2(Q′)

is a triangle T̃ with vertices at 0, 1, and ∞. Moreover, D is the union of T̃ with its reflection
T̃− across the imaginary axis. Since Γ(2) identifies the sides of D in the same way that the
triangle group ∆(∞, ∞, ∞) does, then Γ(2) ∼= ∆(∞, ∞, ∞).

Proposition 5. Γ(2) ∼= ∆(∞, ∞, ∞)

As usual, ∆(∞, ∞, ∞) is generated by rotations about the vertices of the triangle T̃. Us-
ing this geometric description we compute that these rotations are given by the matrices(

1 2
0 1

)
,
(
−1 0
2 −1

)
,
(
−1 2
−2 3

)
so by the above, these three matrices generate Γ(2).

III. MONODROMY AND FUCHSIAN GROUPS

III.1. Revisiting results in the language of Fuchsian groups. Many results that we stated
in general for covering spaces or morphisms of Riemann surfaces can be reinterpreted in
the case of a morphism between quotients of H by Fuchsian groups.

In a previous lecture, we proved the following result.

Proposition 6. Let X1 and X2 be Riemann surfaces uniformized by Fuchsian groups Γ1 and Γ2
acting freely on H, so X1

∼= Γ1\H and X2
∼= Γ2\H. Then X1

∼= X2 iff Γ1 and Γ2 are conjugate in
PSL2(R), i.e., there exists T ∈ PSL2(R) such that T Γ1T−1 = Γ2.

H H

Γ1\H Γ2\H

T

p1 p2

ϕ

Proposition 7. Let Γ be a Fuchsian group acting freely on H. Then

Aut(Γ\H) ∼= N(Γ)/Γ

where
N(Γ) = {T ∈ PSL2(R) : TΓT−1 = Γ}

is the normalizer of Γ in PSL2(R). In particular, when Γ is a normal subgroup of PSL2(R), then

Aut(Γ\H) ∼= PSL2(R)/Γ .

Proof idea. Taking Γ1 = Γ2 in the previous proposition, we obtain a surjection N(Γ) →
Aut(Γ\H) whose kernel is exactly Γ. �

In the material on covering spaces, we discussed the following result.
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Theorem 8. Let G be a finite group acting faithfully on a Riemann surface X. Then G\X can be
given the structure of a Riemann surface, and the quotient map π : X → G\X is holomorphic of
degree #G and eP(π) = # StabG(P) for all P ∈ X.

Corollary 9. Let G be a finite group acting faithfully on a compact, connected Rieman surface X,
let Y = G\X and let π : X → Y be the quotient map. Suppose that π has k ramification values
y1, . . . , yk ∈ Y such that π has ramification index ri at each of the #G/ri points above yi. Then

2g(X)− 2 = #G(2g(G\X)− 2) +
k

∑
i=1

#G
ri

(ri − 1)

= #G

(
2g(G\X)− 2 +

k

∑
i=1

(
1− 1

ri

))
.

Remark 10. As mentioned previously, if X is a Riemann surface of genus g ≥ 2, then
Aut(X) is finite by Hurwitz’s theorem on automorphisms. Thus in this case, every group
G acting on X must factor through a finite quotient. (In other words, we can basically
assume that G is finite.)

Recall that the congruence subgroup Γ(N) fits into the short exact sequence

1→ Γ(N)→ Γ(1) π→ PSL2(Z/NZ)→ 1

where π is the group homomorphism that reduces the entries of a matrix mod N. We saw
that Γ(2)\H had genus 0, since it was a triangle group. We now use the above corollary
to give an expression for Γ(N)\H.

Proposition 11. Suppose N ≥ 2 and let gN be the genus of Γ(N)\H. Then

2gN − 2 = [Γ(1) : Γ(N)]

(
−2 +

(
1− 1

2
− 1

3
− 1

N

))
,

where 2, 3, N are the ramification indices above the three branch values i, e2πi/6, and ∞.

Proof sketch. By results on universal covering spaces, we have the following commutative
diagram.

H

Γ(N)\H Γ(1)\H ∼= P1 \ {∞}
F

Moreover, we have

Γ(1)\H ∼=
Γ(N)\H

Γ(N)\Γ(1)
so the map F is simply quotienting by the action of

Γ(N)\Γ(1) ∼= PSL2(Z/NZ)

on Γ(N)\H. Let m1, m2, m3 be the ramification indices above the three branch values
i, e2πi/6, and ∞. Since N ≥ 2, one can show that Γ(N) is torsion-free. This in turn im-
plies that m1 = 2 and m2 = 3. By examining the compactification of Γ(N)\H at ∞, one
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can show that m3 = N. (For details, see Example 2.40 of GGD or Diamond and Shurman.)
Applying the version of Riemann-Hurwitz for quotient maps, the result follows. �

III.2. Monodromy via Fuchsian groups. Recall that, given a morphism F : X → Y, the
monodromy of F describes the action of the fundamental group π1(Y) on a fiber of F. We
can reinterpret this in terms of Fuchsian groups as well.

Let F : X → Y be a morphism of Riemann surfaces. Let Y∗ be Y without the ramification
values of F, and let X∗ = F−1(Y∗). Applying the uniformization theorem, we obtain
Fuchsian groups ΓX ≤ ΓY such that

X∗ ∼= ΓX\H Y∗ ∼= ΓY\H
as well as a morphism G : ΓX\H → ΓY\H. Since H → ΓY\H ∼= Y∗ is the universal cover
of Y∗, then

π1(Y∗) ∼= ΓY .
Given y ∈ Y, then y corresponds to [z0]ΓY ∈ ΓY\H for some z0 ∈ H. (Here [·]ΓY denotes the
equivalence class modulo the action of ΓY.) Moreover, by commutativity of the diagram

H

ΓX\H ΓY\H

ϕX
ϕY

G

given y ∈ Y, the fiber G−1(y) is

{[β(z0)]ΓX : β ∈ ΓX\ΓY}
where β ranges over a set of right coset representatives for ΓX\ΓY. Thus we have a bijec-
tion

Φ : ΓX\ΓY → G−1(y)
ΓXβ 7→ [β(z0)]ΓX .

We want to reinterpret the monodromy representation in terms of the groups ΓX and ΓY
using the above bijection. Let

ρ : π1(Y)→ Sym(G−1(y))

be the monodromy representation of G. Given γ ∈ ΓY, we describe the permutation ρ(γ)
as folows.
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