BELYI MAPS AND DESSINS D'ENFANTS LECTURE 14

SAM SCHIAVONE

Contents

I. Review	1
II. The modular group as a triangle group	1
II.1. Subgroups and congruence subgroups	1
III. Monodromy and Fuchsian groups	3
III.1. Revisiting results in the language of Fuchsian groups	3
III.2. Monodromy via Fuchsian groups	5

I. REVIEW

Last time we:

- (1) Defined a Fuchsian triangle group as the set of orientation-preserving isometries of \mathfrak{D} generated by the rotations about the vertices.
- (2) Noted that, given a hyperbolic triangle with angles π/a , π/b , π/c , then the triangle group $\Delta(a, b, c)$ has presentation

$$\langle \delta_a, \delta_b, \delta_c \mid \delta_a{}^a = \delta_b{}^b = \delta_c{}^c = \delta_a \delta_b \delta_c = 1 \rangle.$$

(3) Discovered that the modular group $\Gamma(1) = \text{PSL}_2(\mathbb{Z})$ is a triangle group, namely $\Delta(2, 3, \infty)$. We showed this by constructing a fundamental domain for $\Gamma(1)$, namely the triangle with vertices at *i*, $e^{2\pi i/6}$, and ∞ , together with its reflection across the imaginary axis.

II. THE MODULAR GROUP AS A TRIANGLE GROUP

II.1. Subgroups and congruence subgroups.

Proposition 1. Let Γ and Γ' be Fuchsian groups. Suppose that $\Gamma' \leq \Gamma$ and $[\Gamma : \Gamma'] = n$. Let $\gamma_1, \ldots, \gamma_n \in \Gamma$ be a set of right coset representatives of $\Gamma' \setminus \Gamma$. Let Q be a hyperbolic polygon that is a fundamental domain for Γ . Then

$$D := \bigcup_{j=1}^n \gamma_j(Q)$$

...

is a fundamental domain for Γ' .

Date: May 3, 2021.

Remark 2. In other words, if we know a fundamental domain Q for a Fuchsian group Γ and $\Gamma' \leq \Gamma$, we can obtain a fundamental domain for Γ' by translating Q by a set of coset representatives.

An important class of subgroups of $\Gamma(1)$ are so-called principal congruence subgroups. For $N \in \mathbb{Z}_{\geq 1}$, the principal congruence subgroup $\Gamma(N)$ is the kernel of the reduction map

$$\Gamma(1) = \mathrm{PSL}_2(\mathbb{Z}) \to \mathrm{PSL}_2(\mathbb{Z}/N\mathbb{Z})$$

that reduces the entries of a matrix modulo *N*. In other words, $\Gamma(N)$ fits into a short exact sequence

$$1 \to \Gamma(N) \to \Gamma(1) \to \mathrm{PSL}_2(\mathbb{Z}/N\mathbb{Z}) \to 1.$$

 $\Gamma(2)$ turns out to be of particular interest. We will show that $\Gamma(2) \cong \Delta(\infty, \infty, \infty)$, the free group on two generators.

Lemma 3. Let $q = p^r$ be a prime power. Then

$$\#\operatorname{GL}_m(\mathbb{F}_q) = (q^m - 1)(q^m - q) \cdots (q^m - q^{m-1}).$$

Corollary 4. $\# PSL_2(\mathbb{Z}/2\mathbb{Z}) = (2^2 - 1)(2^2 - 2) = 6.$

Proof. Note that $GL_2(\mathbb{Z}/2\mathbb{Z}) = SL_2(\mathbb{Z}/2\mathbb{Z})$ since the only possibilities for the value of the determinant are 0 and 1. Also note that the center of $GL_2(\mathbb{Z}/2\mathbb{Z})$ is trivial, so $PSL_2(\mathbb{Z}/2\mathbb{Z}) \cong GL_2(\mathbb{Z}/2\mathbb{Z})$.

In order to apply the above proposition to determine a fundamental domain, we must find a set of coset representatives for $\Gamma(2)\setminus\Gamma(1)$. Recall that the reflections of the 2, 3, ∞ triangle are

$$\tau_3: z \mapsto -\overline{z}, \quad \tau_2: z \mapsto -\overline{z} + 1, \quad \tau_\infty: z \mapsto 1/\overline{z}$$

(To see this: to get a reflection over the imaginary axis, we first reflect over the real axis, then rotate 180°. To get a rotation across the line Re(z) = 1/2, do the above, then translate by 1. Finally, note that $\overline{z} = 1/z$ for points on the unit circle, so $1/\overline{z}$ fixes the unit circle.) [Show picture on p. 124 of GGD.] We can find the corresponding reflections by composing these, obtaining

$$\delta_2 = \tau_{\infty} \circ \tau_3 : z \mapsto -1/z \qquad \begin{pmatrix} 0 & -1 \\ 1 & 0 \end{pmatrix}$$
$$\delta_3 = \tau_{\infty} \circ \tau_2 : z \mapsto \frac{1}{-z+1} \qquad \begin{pmatrix} 0 & 1 \\ -1 & 1 \end{pmatrix}$$
$$\delta_{\infty} = \tau_3 \circ \tau_2 : z \mapsto z-1 \qquad \begin{pmatrix} 1 & -1 \\ 0 & 1 \end{pmatrix}$$

are generators for $\Gamma(1)$. One can show that the following is a set of representatives

$$\mathbf{id} = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}, \quad \delta_3 = \begin{pmatrix} 0 & -1 \\ 1 & -1 \end{pmatrix}, \quad \delta_3^2 = \begin{pmatrix} 1 & -1 \\ 1 & 0 \end{pmatrix}, \\ \delta_\infty = \begin{pmatrix} 1 & -1 \\ 0 & 1 \end{pmatrix}, \quad \delta_\infty \delta_3 = \begin{pmatrix} -1 & 0 \\ 1 & -1 \end{pmatrix}, \quad \delta_2 = \begin{pmatrix} 0 & -1 \\ 1 & 0 \end{pmatrix}$$

Rather than choosing the usual fundamental domain for $\Gamma(1)$, we will instead take the triangle with vertices *i*, $e^{2\pi i/6}$ and ∞ , toegether with its reflection over the vertical line

 $\operatorname{Re}(z) = 1/2$. We denote this fundamental domain by Q'. [Show picture on p. 124 of GGD. again.] By the proposition above, then

$$D = Q' \cup \delta_3(Q') \cup \delta_3^2(Q') \cup \delta_\infty(Q') \cup \delta_\infty\delta_3(Q') \cup \delta_2(Q')$$

is a fundamental domain for $\Gamma(2)$. Observe that

$$Q'\cup\delta_3(Q')\cup\delta_3^2(Q')$$

is a triangle \tilde{T} with vertices at 0, 1, and ∞ . Moreover, D is the union of \tilde{T} with its reflection \tilde{T}^- across the imaginary axis. Since $\Gamma(2)$ identifies the sides of D in the same way that the triangle group $\Delta(\infty, \infty, \infty)$ does, then $\Gamma(2) \cong \Delta(\infty, \infty, \infty)$.

Proposition 5. $\Gamma(2) \cong \Delta(\infty, \infty, \infty)$

As usual, $\Delta(\infty, \infty, \infty)$ is generated by rotations about the vertices of the triangle \tilde{T} . Using this geometric description we compute that these rotations are given by the matrices

$$\begin{pmatrix} 1 & 2 \\ 0 & 1 \end{pmatrix}, \quad \begin{pmatrix} -1 & 0 \\ 2 & -1 \end{pmatrix}, \quad \begin{pmatrix} -1 & 2 \\ -2 & 3 \end{pmatrix}$$

so by the above, these three matrices generate $\Gamma(2)$.

III. MONODROMY AND FUCHSIAN GROUPS

III.1. **Revisiting results in the language of Fuchsian groups.** Many results that we stated in general for covering spaces or morphisms of Riemann surfaces can be reinterpreted in the case of a morphism between quotients of \mathfrak{H} by Fuchsian groups.

In a previous lecture, we proved the following result.

Proposition 6. Let X_1 and X_2 be Riemann surfaces uniformized by Fuchsian groups Γ_1 and Γ_2 acting freely on \mathfrak{H} , so $X_1 \cong \Gamma_1 \setminus \mathfrak{H}$ and $X_2 \cong \Gamma_2 \setminus \mathfrak{H}$. Then $X_1 \cong X_2$ iff Γ_1 and Γ_2 are conjugate in $PSL_2(\mathbb{R})$, *i.e.*, there exists $T \in PSL_2(\mathbb{R})$ such that $T \Gamma_1 T^{-1} = \Gamma_2$.

$$\begin{array}{c} \mathfrak{H} \xrightarrow{T} \mathfrak{H} \\ \downarrow^{p_1} \qquad \downarrow^{p_2} \\ \Gamma_1 \backslash \mathfrak{H} \xrightarrow{\varphi} \Gamma_2 \backslash \mathfrak{H} \end{array}$$

Proposition 7. Let Γ be a Fuchsian group acting freely on \mathfrak{H} . Then

$$\operatorname{Aut}(\Gamma \backslash \mathfrak{H}) \cong N(\Gamma) / \Gamma$$

where

$$N(\Gamma) = \{T \in PSL_2(\mathbb{R}) : T\Gamma T^{-1} = \Gamma\}$$

is the normalizer of Γ *in* $PSL_2(\mathbb{R})$ *. In particular, when* Γ *is a normal subgroup of* $PSL_2(\mathbb{R})$ *, then*

$$\operatorname{Aut}(\Gamma \setminus \mathfrak{H}) \cong \operatorname{PSL}_2(\mathbb{R})/\Gamma$$
.

Proof idea. Taking $\Gamma_1 = \Gamma_2$ in the previous proposition, we obtain a surjection $N(\Gamma) \rightarrow Aut(\Gamma \setminus \mathfrak{H})$ whose kernel is exactly Γ .

In the material on covering spaces, we discussed the following result.

Theorem 8. Let *G* be a finite group acting faithfully on a Riemann surface *X*. Then $G \setminus X$ can be given the structure of a Riemann surface, and the quotient map $\pi : X \to G \setminus X$ is holomorphic of degree #G and $e_P(\pi) = \#\operatorname{Stab}_G(P)$ for all $P \in X$.

Corollary 9. Let *G* be a finite group acting faithfully on a compact, connected Rieman surface X, let $Y = G \setminus X$ and let $\pi : X \to Y$ be the quotient map. Suppose that π has k ramification values $y_1, \ldots, y_k \in Y$ such that π has ramification index r_i at each of the $\#G/r_i$ points above y_i . Then

$$2g(X) - 2 = \#G(2g(G \setminus X) - 2) + \sum_{i=1}^{k} \frac{\#G}{r_i}(r_i - 1)$$
$$= \#G\left(2g(G \setminus X) - 2 + \sum_{i=1}^{k} \left(1 - \frac{1}{r_i}\right)\right).$$

Remark 10. As mentioned previously, if *X* is a Riemann surface of genus $g \ge 2$, then Aut(*X*) is finite by Hurwitz's theorem on automorphisms. Thus in this case, every group *G* acting on *X* must factor through a finite quotient. (In other words, we can basically assume that *G* is finite.)

Recall that the congruence subgroup $\Gamma(N)$ fits into the short exact sequence

$$1 \to \Gamma(N) \to \Gamma(1) \stackrel{\scriptscriptstyle n}{\to} \mathrm{PSL}_2(\mathbb{Z}/N\mathbb{Z}) \to 1$$

where π is the group homomorphism that reduces the entries of a matrix mod *N*. We saw that $\Gamma(2)\setminus\mathfrak{H}$ had genus 0, since it was a triangle group. We now use the above corollary to give an expression for $\Gamma(N)\setminus\mathfrak{H}$.

Proposition 11. Suppose $N \ge 2$ and let g_N be the genus of $\Gamma(N) \setminus \mathfrak{H}$. Then

$$2g_N - 2 = \left[\Gamma(1) : \Gamma(N)\right] \left(-2 + \left(1 - \frac{1}{2} - \frac{1}{3} - \frac{1}{N}\right)\right),$$

where 2, 3, N are the ramification indices above the three branch values $i, e^{2\pi i/6}$, and ∞ .

Proof sketch. By results on universal covering spaces, we have the following commutative diagram.

Moreover, we have

$$\Gamma(1) \setminus \mathfrak{H} \cong \frac{\Gamma(N) \setminus \mathfrak{H}}{\Gamma(N) \setminus \Gamma(1)}$$

so the map *F* is simply quotienting by the action of

$$\Gamma(N) \setminus \Gamma(1) \cong \mathrm{PSL}_2(\mathbb{Z}/N\mathbb{Z})$$

on $\Gamma(N)\setminus\mathfrak{H}$. Let m_1, m_2, m_3 be the ramification indices above the three branch values $i, e^{2\pi i/6}$, and ∞ . Since $N \ge 2$, one can show that $\Gamma(N)$ is torsion-free. This in turn implies that $m_1 = 2$ and $m_2 = 3$. By examining the compactification of $\Gamma(N)\setminus\mathfrak{H}$ at ∞ , one

can show that $m_3 = N$. (For details, see Example 2.40 of GGD or Diamond and Shurman.) Applying the version of Riemann-Hurwitz for quotient maps, the result follows.

III.2. **Monodromy via Fuchsian groups.** Recall that, given a morphism $F : X \to Y$, the monodromy of *F* describes the action of the fundamental group $\pi_1(Y)$ on a fiber of *F*. We can reinterpret this in terms of Fuchsian groups as well.

Let $F : X \to Y$ be a morphism of Riemann surfaces. Let Y^* be Y without the ramification values of F, and let $X^* = F^{-1}(Y^*)$. Applying the uniformization theorem, we obtain Fuchsian groups $\Gamma_X \leq \Gamma_Y$ such that

$$X^*\cong \Gamma_Xackslash\mathfrak{H} \qquad Y^*\cong \Gamma_Yackslash\mathfrak{H}$$

as well as a morphism $G : \Gamma_X \setminus \mathfrak{H} \to \Gamma_Y \setminus \mathfrak{H}$. Since $\mathfrak{H} \to \Gamma_Y \setminus \mathfrak{H} \cong Y^*$ is the universal cover of Y^* , then

$$\pi_1(\Upsilon^*)\cong\Gamma_Y$$
 .

Given $y \in Y$, then y corresponds to $[z_0]_{\Gamma_Y} \in \Gamma_Y \setminus \mathfrak{H}$ for some $z_0 \in \mathfrak{H}$. (Here $[\cdot]_{\Gamma_Y}$ denotes the equivalence class modulo the action of Γ_Y .) Moreover, by commutativity of the diagram

$$\begin{array}{c} \mathfrak{H} \\ \varphi_X \downarrow \\ \Gamma_X \backslash \mathfrak{H} \xrightarrow{\varphi_Y} \\ \overline{G} \end{array} \Gamma_Y \backslash \mathfrak{H}$$

given $y \in Y$, the fiber $G^{-1}(y)$ is

$$\{[\beta(z_0)]_{\Gamma_X}:\beta\in\Gamma_X\backslash\Gamma_Y\}$$

where β ranges over a set of right coset representatives for $\Gamma_X \setminus \Gamma_Y$. Thus we have a bijection

$$\Phi: \Gamma_X \setminus \Gamma_Y o G^{-1}(y)$$

 $\Gamma_X \beta \mapsto [\beta(z_0)]_{\Gamma_X}.$

We want to reinterpret the monodromy representation in terms of the groups Γ_X and Γ_Y using the above bijection. Let

$$\rho: \pi_1(Y) \to \operatorname{Sym}(G^{-1}(y))$$

be the monodromy representation of *G*. Given $\gamma \in \Gamma_Y$, we describe the permutation $\rho(\gamma)$ as follows.