BELYI MAPS AND DESSINS D'ENFANTS LECTURE 14

SAM SCHIAVONE

CONTENTS

I. Review 1
II. The modular group as a triangle group 1
II.1. Subgroups and congruence subgroups 1
III. Monodromy and Fuchsian groups 3
III.1. Revisiting results in the language of Fuchsian groups 3
III.2. Monodromy via Fuchsian groups 5

I. Review

Last time we:
(1) Defined a Fuchsian triangle group as the set of orientation-preserving isometries of \mathfrak{D} generated by the rotations about the vertices.
(2) Noted that, given a hyperbolic triangle with angles $\pi / a, \pi / b, \pi / c$, then the triangle group $\Delta(a, b, c)$ has presentation

$$
\left\langle\delta_{a}, \delta_{b}, \delta_{c} \mid \delta_{a}^{a}=\delta_{b}^{b}=\delta_{c}^{c}=\delta_{a} \delta_{b} \delta_{c}=1\right\rangle
$$

(3) Discovered that the modular group $\Gamma(1)=\operatorname{PSL}_{2}(\mathbb{Z})$ is a triangle group, namely $\Delta(2,3, \infty)$. We showed this by constructing a fundamental domain for $\Gamma(1)$, namely the triangle with vertices at $i, e^{2 \pi i / 6}$, and ∞, together with its reflection across the imaginary axis.

II. THE MODULAR GROUP AS A TRIANGLE GROUP

II.1. Subgroups and congruence subgroups.

Proposition 1. Let Γ and Γ^{\prime} be Fuchsian groups. Suppose that $\Gamma^{\prime} \leq \Gamma$ and $\left[\Gamma: \Gamma^{\prime}\right]=n$. Let $\gamma_{1}, \ldots, \gamma_{n} \in \Gamma$ be a set of right coset representatives of $\Gamma^{\prime} \backslash \Gamma$. Let Q be a hyperbolic polygon that is a fundamental domain for Γ. Then

$$
D:=\bigcup_{j=1}^{n} \gamma_{j}(Q)
$$

is a fundamental domain for Γ^{\prime}.
Date: May 3, 2021.

Remark 2. In other words, if we know a fundamental domain Q for a Fuchsian group Γ and $\Gamma^{\prime} \leq \Gamma$, we can obtain a fundamental domain for Γ^{\prime} by translating Q by a set of coset representatives.

An important class of subgroups of $\Gamma(1)$ are so-called principal congruence subgroups. For $N \in \mathbb{Z}_{\geq 1}$, the principal congruence subgroup $\Gamma(N)$ is the kernel of the reduction map

$$
\Gamma(1)=\operatorname{PSL}_{2}(\mathbb{Z}) \rightarrow \operatorname{PSL}_{2}(\mathbb{Z} / N \mathbb{Z})
$$

that reduces the entries of a matrix modulo N. In other words, $\Gamma(N)$ fits into a short exact sequence

$$
1 \rightarrow \Gamma(N) \rightarrow \Gamma(1) \rightarrow \operatorname{PSL}_{2}(\mathbb{Z} / N \mathbb{Z}) \rightarrow 1
$$

$\Gamma(2)$ turns out to be of particular interest. We will show that $\Gamma(2) \cong \Delta(\infty, \infty, \infty)$, the free group on two generators.
Lemma 3. Let $q=p^{r}$ be a prime power. Then

$$
\# \mathrm{GL}_{m}\left(\mathbb{F}_{q}\right)=\left(q^{m}-1\right)\left(q^{m}-q\right) \cdots\left(q^{m}-q^{m-1}\right)
$$

Corollary 4. $\# \operatorname{PSL}_{2}(\mathbb{Z} / 2 \mathbb{Z})=\left(2^{2}-1\right)\left(2^{2}-2\right)=6$.
Proof. Note that $\mathrm{GL}_{2}(\mathbb{Z} / 2 \mathbb{Z})=\mathrm{SL}_{2}(\mathbb{Z} / 2 \mathbb{Z})$ since the only possibilities for the value of the determinant are 0 and 1. Also note that the center of $\mathrm{GL}_{2}(\mathbb{Z} / 2 \mathbb{Z})$ is trivial, so $\operatorname{PSL}_{2}(\mathbb{Z} / 2 \mathbb{Z}) \cong \mathrm{GL}_{2}(\mathbb{Z} / 2 \mathbb{Z})$.

In order to apply the above proposition to determine a fundamental domain, we must find a set of coset representatives for $\Gamma(2) \backslash \Gamma(1)$. Recall that the reflections of the $2,3, \infty$ triangle are

$$
\tau_{3}: z \mapsto-\bar{z}, \quad \tau_{2}: z \mapsto-\bar{z}+1, \quad \tau_{\infty}: z \mapsto 1 / \bar{z} .
$$

(To see this: to get a reflection over the imaginary axis, we first reflect over the real axis, then rotate 180°. To get a rotation across the line $\operatorname{Re}(z)=1 / 2$, do the above, then translate by 1 . Finally, note that $\bar{z}=1 / z$ for points on the unit circle, so $1 / \bar{z}$ fixes the unit circle.) [Show picture on p .124 of GGD.] We can find the corresponding reflections by composing these, obtaining

$$
\begin{array}{cc}
\delta_{2}=\tau_{\infty} \circ \tau_{3}: z \mapsto-1 / z & \left(\begin{array}{cc}
0 & -1 \\
1 & 0
\end{array}\right) \\
\delta_{3}=\tau_{\infty} \circ \tau_{2}: z \mapsto \frac{1}{-z+1} & \left(\begin{array}{cc}
0 & 1 \\
-1 & 1
\end{array}\right) \\
\delta_{\infty}=\tau_{3} \circ \tau_{2}: z \mapsto z-1 & \left(\begin{array}{cc}
1 & -1 \\
0 & 1
\end{array}\right)
\end{array}
$$

are generators for $\Gamma(1)$. One can show that the following is a set of representatives

$$
\begin{aligned}
& \mathrm{id}=\left(\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right), \quad \delta_{3}=\left(\begin{array}{ll}
0 & -1 \\
1 & -1
\end{array}\right), \quad \delta_{3}^{2}=\left(\begin{array}{cc}
1 & -1 \\
1 & 0
\end{array}\right), \\
& \delta_{\infty}=\left(\begin{array}{cc}
1 & -1 \\
0 & 1
\end{array}\right), \quad \delta_{\infty} \delta_{3}=\left(\begin{array}{cc}
-1 & 0 \\
1 & -1
\end{array}\right), \quad \delta_{2}=\left(\begin{array}{cc}
0 & -1 \\
1 & 0
\end{array}\right)
\end{aligned}
$$

Rather than choosing the usual fundamental domain for $\Gamma(1)$, we will instead take the triangle with vertices $i, e^{2 \pi i / 6}$ and ∞, toegether with its reflection over the vertical line
$\operatorname{Re}(z)=1 / 2$. We denote this fundamental domain by Q^{\prime}. [Show picture on p. 124 of GGD. again.] By the proposition above, then

$$
D=Q^{\prime} \cup \delta_{3}\left(Q^{\prime}\right) \cup \delta_{3}^{2}\left(Q^{\prime}\right) \cup \delta_{\infty}\left(Q^{\prime}\right) \cup \delta_{\infty} \delta_{3}\left(Q^{\prime}\right) \cup \delta_{2}\left(Q^{\prime}\right)
$$

is a fundamental domain for $\Gamma(2)$. Observe that

$$
Q^{\prime} \cup \delta_{3}\left(Q^{\prime}\right) \cup \delta_{3}{ }^{2}\left(Q^{\prime}\right)
$$

is a triangle \widetilde{T} with vertices at 0,1 , and ∞. Moreover, D is the union of \widetilde{T} with its reflection \widetilde{T}^{-}across the imaginary axis. Since $\Gamma(2)$ identifies the sides of D in the same way that the triangle group $\Delta(\infty, \infty, \infty)$ does, then $\Gamma(2) \cong \Delta(\infty, \infty, \infty)$.
Proposition 5. $\Gamma(2) \cong \Delta(\infty, \infty, \infty)$
As usual, $\Delta(\infty, \infty, \infty)$ is generated by rotations about the vertices of the triangle \widetilde{T}. Using this geometric description we compute that these rotations are given by the matrices

$$
\left(\begin{array}{ll}
1 & 2 \\
0 & 1
\end{array}\right), \quad\left(\begin{array}{cc}
-1 & 0 \\
2 & -1
\end{array}\right), \quad\left(\begin{array}{ll}
-1 & 2 \\
-2 & 3
\end{array}\right)
$$

so by the above, these three matrices generate $\Gamma(2)$.

III. Monodromy and Fuchsian groups

III.1. Revisiting results in the language of Fuchsian groups. Many results that we stated in general for covering spaces or morphisms of Riemann surfaces can be reinterpreted in the case of a morphism between quotients of \mathfrak{H} by Fuchsian groups.

In a previous lecture, we proved the following result.
Proposition 6. Let X_{1} and X_{2} be Riemann surfaces uniformized by Fuchsian groups Γ_{1} and Γ_{2} acting freely on \mathfrak{H}, so $X_{1} \cong \Gamma_{1} \backslash \mathfrak{H}$ and $X_{2} \cong \Gamma_{2} \backslash \mathfrak{H}$. Then $X_{1} \cong X_{2}$ iff Γ_{1} and Γ_{2} are conjugate in $\operatorname{PSL}_{2}(\mathbb{R})$, i.e., there exists $T \in \operatorname{PSL}_{2}(\mathbb{R})$ such that $T \Gamma_{1} T^{-1}=\Gamma_{2}$.

Proposition 7. Let Γ be a Fuchsian group acting freely on \mathfrak{H}. Then

$$
\operatorname{Aut}(\Gamma \backslash \mathfrak{H}) \cong N(\Gamma) / \Gamma
$$

where

$$
N(\Gamma)=\left\{T \in \operatorname{PSL}_{2}(\mathbb{R}): T \Gamma T^{-1}=\Gamma\right\}
$$

is the normalizer of Γ in $\operatorname{PSL}_{2}(\mathbb{R})$. In particular, when Γ is a normal subgroup of $\operatorname{PSL}_{2}(\mathbb{R})$, then

$$
\operatorname{Aut}(\Gamma \backslash \mathfrak{H}) \cong \operatorname{PSL}_{2}(\mathbb{R}) / \Gamma
$$

Proof idea. Taking $\Gamma_{1}=\Gamma_{2}$ in the previous proposition, we obtain a surjection $N(\Gamma) \rightarrow$ $\operatorname{Aut}(\Gamma \backslash \mathfrak{H})$ whose kernel is exactly Γ.

In the material on covering spaces, we discussed the following result.

Theorem 8. Let G be a finite group acting faithfully on a Riemann surface X. Then $G \backslash X$ can be given the structure of a Riemann surface, and the quotient map $\pi: X \rightarrow G \backslash X$ is holomorphic of degree $\# G$ and $e_{P}(\pi)=\# \operatorname{Stab}_{G}(P)$ for all $P \in X$.
Corollary 9. Let G be a finite group acting faithfully on a compact, connected Rieman surface X, let $Y=G \backslash X$ and let $\pi: X \rightarrow Y$ be the quotient map. Suppose that π has k ramification values $y_{1}, \ldots, y_{k} \in Y$ such that π has ramification index r_{i} at each of the $\# G / r_{i}$ points above y_{i}. Then

$$
\begin{aligned}
2 g(X)-2 & =\# G(2 g(G \backslash X)-2)+\sum_{i=1}^{k} \frac{\# G}{r_{i}}\left(r_{i}-1\right) \\
& =\# G\left(2 g(G \backslash X)-2+\sum_{i=1}^{k}\left(1-\frac{1}{r_{i}}\right)\right) .
\end{aligned}
$$

Remark 10. As mentioned previously, if X is a Riemann surface of genus $g \geq 2$, then $\operatorname{Aut}(X)$ is finite by Hurwitz's theorem on automorphisms. Thus in this case, every group G acting on X must factor through a finite quotient. (In other words, we can basically assume that G is finite.)

Recall that the congruence subgroup $\Gamma(N)$ fits into the short exact sequence

$$
1 \rightarrow \Gamma(N) \rightarrow \Gamma(1) \xrightarrow{\pi} \mathrm{PSL}_{2}(\mathbb{Z} / N \mathbb{Z}) \rightarrow 1
$$

where π is the group homomorphism that reduces the entries of a matrix mod N. We saw that $\Gamma(2) \backslash \mathfrak{H}$ had genus 0 , since it was a triangle group. We now use the above corollary to give an expression for $\Gamma(N) \backslash \mathfrak{H}$.
Proposition 11. Suppose $N \geq 2$ and let g_{N} be the genus of $\Gamma(N) \backslash \mathfrak{H}$. Then

$$
2 g_{N}-2=[\Gamma(1): \Gamma(N)]\left(-2+\left(1-\frac{1}{2}-\frac{1}{3}-\frac{1}{N}\right)\right)
$$

where $2,3, N$ are the ramification indices above the three branch values $i, e^{2 \pi i / 6}$, and ∞.
Proof sketch. By results on universal covering spaces, we have the following commutative diagram.

Moreover, we have

$$
\Gamma(1) \backslash \mathfrak{H} \cong \frac{\Gamma(N) \backslash \mathfrak{H}}{\Gamma(N) \backslash \Gamma(1)}
$$

so the map F is simply quotienting by the action of

$$
\Gamma(N) \backslash \Gamma(1) \cong \mathrm{PSL}_{2}(\mathbb{Z} / N \mathbb{Z})
$$

on $\Gamma(N) \backslash \mathfrak{H}$. Let m_{1}, m_{2}, m_{3} be the ramification indices above the three branch values $i, e^{2 \pi i / 6}$, and ∞. Since $N \geq 2$, one can show that $\Gamma(N)$ is torsion-free. This in turn implies that $m_{1}=2$ and $m_{2}=3$. By examining the compactification of $\Gamma(N) \backslash \mathfrak{H}$ at ∞, one
can show that $m_{3}=N$. (For details, see Example 2.40 of GGD or Diamond and Shurman.) Applying the version of Riemann-Hurwitz for quotient maps, the result follows.
III.2. Monodromy via Fuchsian groups. Recall that, given a morphism $F: X \rightarrow Y$, the monodromy of F describes the action of the fundamental group $\pi_{1}(Y)$ on a fiber of F. We can reinterpret this in terms of Fuchsian groups as well.

Let $F: X \rightarrow Y$ be a morphism of Riemann surfaces. Let Y^{*} be Y without the ramification values of F, and let $X^{*}=F^{-1}\left(Y^{*}\right)$. Applying the uniformization theorem, we obtain Fuchsian groups $\Gamma_{X} \leq \Gamma_{Y}$ such that

$$
X^{*} \cong \Gamma_{X} \backslash \mathfrak{H} \quad Y^{*} \cong \Gamma_{Y} \backslash \mathfrak{H}
$$

as well as a morphism $G: \Gamma_{X} \backslash \mathfrak{H} \rightarrow \Gamma_{Y} \backslash \mathfrak{H}$. Since $\mathfrak{H} \rightarrow \Gamma_{Y} \backslash \mathfrak{H} \cong Y^{*}$ is the universal cover of Y^{*}, then

$$
\pi_{1}\left(Y^{*}\right) \cong \Gamma_{Y} .
$$

Given $y \in Y$, then y corresponds to $\left[z_{0}\right]_{\Gamma_{Y}} \in \Gamma_{Y} \backslash \mathfrak{H}$ for some $z_{0} \in \mathfrak{H}$. (Here $[\cdot]_{\Gamma_{Y}}$ denotes the equivalence class modulo the action of Γ_{Y}.) Moreover, by commutativity of the diagram

given $y \in Y$, the fiber $G^{-1}(y)$ is

$$
\left\{\left[\beta\left(z_{0}\right)\right]_{\Gamma_{X}}: \beta \in \Gamma_{X} \backslash \Gamma_{Y}\right\}
$$

where β ranges over a set of right coset representatives for $\Gamma_{X} \backslash \Gamma_{Y}$. Thus we have a bijection

$$
\begin{aligned}
\Phi: \Gamma_{X} \backslash \Gamma_{Y} & \rightarrow G^{-1}(y) \\
\Gamma_{X} \beta & \mapsto\left[\beta\left(z_{0}\right)\right]_{\Gamma_{X}} .
\end{aligned}
$$

We want to reinterpret the monodromy representation in terms of the groups Γ_{X} and Γ_{Y} using the above bijection. Let

$$
\rho: \pi_{1}(Y) \rightarrow \operatorname{Sym}\left(G^{-1}(y)\right)
$$

be the monodromy representation of G. Given $\gamma \in \Gamma_{Y}$, we describe the permutation $\rho(\gamma)$ as folows.

